Sean Carroll: Yoichiro Nambu (1921-2015)

[Sean Carroll, físico teórico en Caltech y autor de Desde la eternidad hasta hoy: En busca de la teoría definitiva del tiempo y La partícula al final del universo, sobre la búsqueda del bosón de Higgs, despide así en su blog a Yoichiro Nambu, uno de sus ídolos, fallecido recientemente.]

Yoichiro Nambu
Fuente: Chicago Tribune

Ayer recibí la triste noticia de que Yoichiro Nambu había muerto. Tenía 94 años, por lo que su fallecimiento se produjo tras una vida larga y plena.

Nambu fue uno de los más grandes físicos teóricos del siglo XX, aunque nunca fue muy conocido entre el público. Entre sus contribuciones:

  • Ser el primero en comprender realmente la ruptura espontánea de simetría en teoría cuántica de campos, trabajo por el que recibió (con mucho retraso) el premio Nobel en 2008.
  • Sugerir que podían existir quarks de tres colores, y que esos colores podrían ser las cargas de una simetría de gauge SU(3) que daría lugar a partículas portadoras de carga llamadas gluones.
  • Proponer la primera teoría de cuerdas relativista, basada en lo que ahora se conoce como acción de Nambu-Goto.

No está nada mal.

Pero a pesar de sus extraordinarios logros, Nambu era un hombre discreto y educado, incluso podría decirse que «tímido». Era uno de esos físicos de pocas palabras, y al que a menudo costaba esfuerzo entender cuando hablaba, pero si uno hacía el esfuerzo de seguir sus razonamientos siempre obtenía recompensa. A uno de sus colegas en la Univesidad de Chicago, Bruce Winstein, le fascinaba saber que Nambu en el fondo era un experimentalista: al parecer, en su casa tenía un pequeño laboratorio, donde se tomaba un respiro de la resolución de ecuaciones jugueteando con dispositivos electrónicos.

Todo joven científico o científica debería leer este perfil de Nambu escrito por su antiguo alumno Madhusree Mukerjee. En él, Nambu recuerda su llegada a Estados Unidos por primera vez desde Japón, como investigador postdoctoral en el Instituto de Estudios Avanzados en Princeton. «Todo el mundo parecía más inteligente que yo —recordaba Nambu—. Era incapaz de conseguir mis objetivos y tuve una crisis nerviosa.»

Si Yoichirio Nambu tuvo una crisis nerviosa porque no se sentía lo suficientemente inteligente, ¿qué esperanza nos queda al resto?

A continuación, copio aquí unos pocos párrafos que escribí sobre Nambu y la ruptura espontánea de simetría en La partícula al final del universo:

[A]ún quedaba un rompecabezas por resolver: ¿Cómo reconciliamos la idea de que los fotones poseen masa en el interior de un superconductor con la convicción de que la simetría fundamental del electromagnetismo obliga a que el fotón carezca de ella?

Varias personas abordaron este problema, entre los cuales estaban el físico estadounidense Philip Anderson, el físico soviético Nikolay Bogolyubov, y el físico japonés-estadounidense Yoichiro Nambu. Resultó que la clave radicaba en que la simetría existía realmente, pero estaba oculta por un campo que tomaba un valor no nulo en el superconductor. En la jerga propia de este fenómeno, decimos que la simetría «se rompe espontáneamente»: La simetría está en las ecuaciones básicas, pero la solución concreta de dichas ecuaciones que nos interesa no tiene un aspecto muy simétrico.

Yoichiro Nambu, a pesar de obtener el premio Nobel en 2008 y de hacer recibido muchos otros reconocimientos a lo largo de los años, sigue siendo relativamente desconocido fuera de la física. Es una lástima, porque sus contribuciones son comparables a las de colegas más famosos. No solo fue uno de los primeros en comprender la ruptura espontánea de simetría en la física de partículas, sino que también fue el primero en proponer que los quarks poseen color, en sugerir la existencia de los gluones y en señalar que ciertas propiedades de las partículas se podían explicar si imaginábamos que las partículas eran en realidad diminutas cuerdas, punto de partida de la teoría de cuerdas. Los físicos teóricos admiran los logros de Nambu, pero su tendencia natural es a rehuir los focos.

El despacho de Nambu estaba frente al mío cuando yo daba clase en la Universidad de Chicago. No interactuamos mucho, pero cuando lo hicimos fue en todo momento gentil y educado. Nuestro encuentro más importante se produjo cuando llamó a mi puerta esperando que pudiese ayudarle con el sistema de correo electrónico de los ordenadores del grupo de los teóricos, que tenía tendencia a tomarse un respiro en el  momento menos esperado. No fui de mucha ayuda, pero se lo tomó con filosofía. Peter Freund, otro teórico en Chicago, describe a Nambu como un «mago»: «De pronto, saca toda una serie de conejos de su chistera y, antes de que te quieras dar cuenta, los conejos se reordenan en una formación completamente novedosa, y por Dios que se mantienen en un equilibrio imposible sobre sus colas de peluche». Sin embargo, su exquisito sentido de la etiqueta le abandonó cuando fue nombrado brevemente director del departamento: como era reacio a responder explícitamente con una «no» ante cualquier pregunta, indicaba su desaprobación mediante una pausa antes de contestar que «sí». Lo cual causó cierta consternación entre sus colegas cuando se dieron cuenta de que sus solicitudes en realidad no habían sido aceptadas.

Después de que se propusiese la teoría BCS, Nambu comenzó a estudiar el fenómeno desde el punto de vista de un físico de partículas. Destacó la importancia fundamental de la ruptura espontánea de simetría y empezó a plantearse si habría manera de amplicar su ámbito de aplicación. Uno de los logros de Nambu consistió en demostrar (en parte con la colaboración del físico italiano Giovanni Jona-Lasinio) cómo podría producirse la ruptura espontánea de simetría incluso fuera de un superconductor. Podría ocurrir en el espacio vacío, en presencia de un campo de valor no nulo (un claro precursor del campo de Higgs). Cabe notar que su teoría también demostraba cómo un campo fermiónico que inicialmente careciese de masa podía adquirirla mediante el proceso de ruptura de simetría.

Por brillante que fuera, había que pagar un precio por la propuesta de ruptura espontánea de simetría de Nambu. Sus modelos, al tiempo que les proporcionaban masa a los fermiones, predecían una nueva partícula bosónica sin masa (precisamente lo que los físicos de partículas estaban tratando de evitar, puesto que no observaban que las fuerzas fundamentales produjesen tal partícula). No eran bosones de gauge, ya que Nambu estaba planteando la ruptura espontánea de simetrías globales, no locales. Se trataba de un nuevo tipo de partícula sin masa. Al poco tiempo, el físico escocés Jeffrey Goldstone alegó que esto no era simplemente un incordio: La ruptura espontánea de una simetría global siempre da lugar a partículas sin masa, conocidas ahora como «bosones de Nambu-Goldstone». El físico paquistaní Abdus Salam y el estadounidense Steven Weinberg colaboraron más tarde con Goldstone para elevar este argumento a lo que parecía ser una demostración concluyente, denominada actualmente «teorema de Goldstone».

Una de las cuestiones a las que debe dar respuesta cualquier teoría de ruptura de simetría es: ¿cuál es el campo que rompe la simetría? En un superconductor, esta es la función que desempeñan los pares de Cooper, estados compuestos de los electrones. En el modelo de Nambu-Jona Lasinio, se produce un efecto similar gracias a los nucleones compuestos. Sin embargo, a partir del artículo de Goldstone de 1961, los físicos se fueron haciendo a la idea de postular la existencia de un conjunto de nuevos campos bosónicos fundamentales cuya función consistiría en romper simetrías al tomar un valor no nulo en el espacio vacío. Este tipo de campos se llaman «escalares», lo cual es una manera de decir que no poseen espín intrínseco. Los campos de gauge que transmiten las fuerzas, aunque son también bosónicos, poseen espín 1, a excepción del gravitón, cuyo espín es 2.

Si la simetría no se rompiese, todos los campos del modelo de Goldstone se comportarían exactamente de la misma manera, como bosones escalares con masa, debido a los requisitos que impone la simetría. Una vez que esta se ha roto, se establecen diferencias entre los campos. En el caso de una simetría global (una única transformación en todo el espacio), que es el que Goldstone trató, uno de los campos sigue poseyendo masa, mientras que el resto pasa a convertirse en bosones de Nambu-Goldstone sin masa. Este es el teorema de Goldstone.

Más de Sean Carroll en Por amor a la ciencia:

Sean Carroll: De aquí a la eternidad hasta hoy

Sean Carroll: La ciencia de Interstellar

Sean Carroll: Las diez cosas más asombrosas del bosón de Higgs

Escribe un comentario

Puede usar HTML:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>