Brian Cox: la relatividad especial de Einstein
Esta semana celebramos los 100 años de la publicación de la teoría de la relatividad general de Albert Einstein, una de las cumbres de la historia de la ciencia (que culminará con el evento organizado por la publicación de ciencia Materia en Madrid este próximo miércoles, 25 de noviembre).
Tras la entrada del pasado viernes, en la que Walter Isaacson, autor de la gran biografía de Einstein, nos introducía a la relatividad general, hoy nos remontamos a diez años antes, cuando, durante su annus mirabilis de 1905, Einstein presentó la teoría de la relatividad especial, de la que se deriva la que es probablemente la ecuación más famosa de toda la ciencia, E = mc².
Precisamente esa fórmula da título al libro de Brian Cox y Jeff Forshaw ¿Por qué E = mc²? (Debate, 2013), de cuya presentación se extrae este breve vídeo en el que Cox explica otro de los sorprendentes resultados derivados de la relatividad especial, la dilatación temporal, recurriendo a un ingenioso experimento mental ideado por el propio Einstein.
(Aprovechamos también para recordaros que aún estáis a tiempo, hasta este martes 24 de noviembre, de participar en el sorteo organizado por Materia y la editorial Debate de diez ejemplares de la biografía de Einstein escrita por Walter Isaacson entre quienes envíen un vídeo explicando la teoría de la relatividad en menos de un minuto a las cuentas de Twitter o Facebook de Materia con el hasthtag #Relatividad100.)
Transcripción
Quiero hablar un par de minutos sobre la relatividad, porque es una hermosa parte de la ciencia. Y está muy de actualidad, porque hace dos semanas se llevó a cabo un fantástico experimento —se publicaron los resultados del experimento, quiero decir— que confirmó por primera vez con una precisión elevadísima, la confirmación de mayor precisión que hemos tenido nunca, que Einstein no se equivocó.
Su teoría de la gravedad pasó la prueba del experimento más preciso que hemos sido capaces de llevar a cabo, y quería hablar brevemente sobre los resultados de ese experimento, que se publicaron hace solo dos semanas.
De hecho, el experimento se ideó en la década de los años sesenta, por lo que algunos de estos científicos han dedicado todas sus carreras, 50 años, a obtener estos resultados. Pero antes, la relatividad.
Hay una manera muy bella y sencilla de describir lo que es. Este es Albert Einstein. Einstein era un genio porque pensaba de manera muy sencilla, a menudo en imágenes, sobre el funcionamiento del mundo. Y lo que lo tenía fascinado a principios del siglo XX, alrededor de 1905, era un resultado obtenido por un físico escocés llamado James Clerk Maxwell, quien predijo —aunque no fue consciente de ello entonces— que la luz viaja a la misma velocidad con independencia de cómo la miremos.
Es una predicción un poco extraña. Básicamente, lo que estoy diciendo es que, si vuelo hacia ese foco a la velocidad de la luz, o, pongamos, a un 75% de la velocidad de la luz —salgo volando hacia el foco—, la luz me dará en la cara a la velocidad de la luz. No al doble, o 1,75 veces, de la velocidad de la luz, sino a la velocidad de la luz.
Es un predicción muy extraña, pero se deduce de la física teórica del siglo XIX, de experimentos sobre electricidad y magnetismo. Einstein fue la primera persona en tomársela verdaderamente en serio, y decir: ¿Qué implica esto? ¿Qué sucede si decimos que la naturaleza se comporta así, si, con independencia de cómo me mueva respecto a ti, ambos vemos la misma velocidad de la luz?
Para entender las consecuencias, ideó un precioso experimento mental que les puedo contar en un minuto y resume lo esencial de la relatividad.
Imaginó un objeto que llamó «reloj de luz». Supongamos que tengo un reloj muy extraño, compuesto solo por dos espejos, colocados así. Y mi péndulo es la luz, que rebota entre los dos espejos. Podemos imaginar un tic, dos tics; un segundo, dos, tres segundos… Funciona como un reloj de alta precisión.
Pero recordemos que hemos quedado en que todos vemos la misma velocidad de la luz, con independencia de cómo nos estemos moviendo. ¿Qué sucede si subo, literalmente, el reloj al escenario, y lo llevo de un lado a otro? ¿Qué es lo que ven ustedes?
Ven que el reloj marca el tiempo pero, como me estoy moviendo, ven algo que se parece más a esta otra imagen, porque partí desde allí y he caminado hasta aquí. La luz, desde su punto de vista, rebotó así, trazando un triángulo.
¿Qué implica eso? Si es realmente cierto que todos estamos de acuerdo en la velocidad de la luz, que todos vemos que es la misma, entonces ustedes verán que el reloj marca el tiempo más lentamente que yo.
¿Por qué? Porque la luz ha tenido que recorrer una distancia mayor para dar un tic que cuando el reloj estaba en reposo. Esa es la predicción. Una predicción muy extraña, según la cual los relojes en movimiento van más despacio, el tiempo se ralentiza si uno se mueve (desde su punto de vista, al ver cómo me muevo por el escenario).
Resulta que eso es correcto, que es cierto. De hecho, el factor por el que se ralentiza, que viene dado por esta ecuación de aquí, se puede calcular utilizando el teorema de Pitágoras.
Y la razón por la que les muestro la ecuación es para que lo vean —el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, como ya saben— para que puedan ver los cuadrados, las raíces cuadradas y todo eso… Ese el resultado que se obtiene al hacer los cálculos.
Es algo fascinante: esa ecuación se utiliza en los sistemas de navegación por satélite (GPS).
Cuando usted se monta en su coche, enciende el GPS y se pone en marcha, el GPS funciona, básicamente, midiendo diferencias temporales, entre relojes situados en satélites y otros que están sobre la superficie terrestre. Los satélites se mueven respecto a la superficie, y están muy arriba, por lo que la gravedad es ligeramente más débil. Resulta que eso significa que el tiempo pasa a una velocidad distinta.
¿Cuánta es la diferencia? Einstein predijo hace cien años que sería de unos 36.000 nanosegundos por día. (Un nanosegundo es una mil millonésima parte de un segundo.) No parece mucho, 36.000 nanosegundos, pero la luz recorre 30 centímetros en un nanosegundo, lo que significa que el GPS acumularía un error de 36.000 veces 30 centímetros en su medición de la posición. Que equivale a unos diez kilómetros.
De manera que la posición del GPS cambiaría en diez kilómetros al día si no tuviésemos en cuenta este efecto, que Einstein calculó en 1905 imaginando un reloj de luz con dos espejos. Una preciosa parte de la física que encontró aplicación un siglo después en la navegación por satélite.
———————————————
Más información sobre el libro de Cox y Forshaw:
¿Por qué E = mc²? (primeras páginas).
Más sobre Einstein y la teoría de la relatividad:
Walter Isaacson: La teoría más hermosa de Albert Einstein | Por amor a la ciencia
Twittear